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A new method for modeling surface tension effects on fluid motion 
has been developed. Interfaces between fluids of different properties, or 
“colors,” are represented as transition regions of finite thickness, across 
which the color variable varies continuously. At each point in the 
transition region, a force density is defined which is proportional to the 
curvature of the surface of constant color at that point. It is normalized 
so that the conventional description of surface tension on an interface 
is recovered when the ratio of local transition region thickness to local 
radius of curvature approaches zero. The continuum method eliminates 
the need for interface reconstruction, simplifies the calculation of sur- 
face tension, enables accurate modeling of two- and three-dimensional 
fluid flows driven by surface forces, and does not impose any modeling 
restrictions on the number, complexity, or dynamic evolution of fluid 
interfaces having surface tension. Computational results for two- 
dimensional flows are given to illustrate the properties of the method. 
,o 1992 Academrc Press. Inc 

I. INTRODUCTION 

Liquid surfaces are in a state of tension, as though they 
possessed an elastic skin, because fluid molecules at or near 
the surface experience uneven molecular forces of attraction 
[ 11. Since abrupt changes in molecular forces occur when 
fluid properties change discontinuously, surface tension is 
an inherent characteristic of material interfaces. Surface 
tension results in a microscopic, localized “surface force” 
that exerts itself on fluid elements at interfaces in both the 
normal and tangential directions. Fluid interfacial motion 
induced by surface tension plays a fundamental role in 
many natural and industrial phenomena. Examples can 
be found in the studies of capillarity [2, 31, low-gravity 
fluid flow [4, 51, hydrodynamic stability [6], surfactant 
behavior [7, 81, cavitation [9], and droplet dynamics [2] 
in clouds [lo] and in fuel sprays used in internal com- 
bustion engines [ 111. Detailed analyses of these processes 
typically involve the use of numerical models to aid in 
understanding the resulting nonlinear fluid flows. Previous 
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auspices of the United States Department of Energy by the Los Alamos 
National Laboratory under Contract W-7405-Eng-36. 

methods have suffered, however, from difficulties in 
modeling topologically complex interfaces having surface 
tension. We present a numerical method for modeling 
surface tension that alleviates these interface topology 
constraints, which we call the continuum surface force 
(CSF) model. The model interprets surface tension as a 
continuous, three-dimensional effect across an interface, 
rather than as a boundary value condition on the interface. 

The motivation for the CSF model presented in this paper 
is the accurate solution of Laplace’s formula, Eq. (9) below, 
for surface pressures occurring at transient fluid interfaces of 
arbitrary and time-dependent topology. The CSF model 
appears applicable to a general class of fluid phenomena 
influenced by interfacial surface tension. It has been applied 
successfully to model incompressible fluid flow in low- 
gravity environments, capillarity, and droplet dynamics. 

Consider, first, the effect of surface tension on a fluid 
interface. The surface stress boundary condition at an inter- 
face between two fluids (labeled 1 and 2) is [ 121 

where (T is the fluid surface tension coefficient (in units of 
force per unit length), pa is the pressure in fluid CI for c1= 1, 2, 
7,ik is the viscous stress tensor, ii is the unit normal (into 
fluid 2) at the interface, and K is the local surface curvature, 
R;' + R; ‘, where R, and R, are the principal radii of 
curvature of the surface. (Because 6, in the formulation 
of Ref. [12], is defined only on the interfacial surface, it 
can only have a surface gradient; this would be, perhaps, 
more clearly indicated by replacing &/ax, in (1) by 
(6, -@i/J as/ax,.) 

The gradient along a direction normal to the interface, 
V N? is 

v, = ??(A . V). (2) 

The surface tension, 0, may vary along the interface and 
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where ~1, is the molecular viscosity in fluid a and u is the II. THE CONTINUUM METHOD 
fluid velocity. The normal and tangential projections of (1) 
then lead to scalar pressure boundary conditions at the A. A Volume Reformulation of Surface Tension 

interface as given by [ 12, 133: In its standard form, surface tension contributes a surface 
pressure (9) that is the normal force per unit interfacial area 

for the normal direction. and 

where K(x,) is the curvature, taken positive if the center of 
curvature is in fluid 2 (see Appendix), and fi(x,) is the unit 

for a tangential direction. The surface derivative is normal to A at x,, assumed to point into fluid 2. 
Consider two fluids, fluid 1 and fluid 2, separated by an 

a -=i.V, 
as (7) 

interface at time t. The two fluids are distinguished by some 
characteristic function, c(x), 

and the normal derivative is 

1 

Cl, in fluid 1; 

c(x)= c2> in fluid 2; (11) 
a -=fi.v an (8) 

cc> = (Cl + c2)/2, at the interface, 

that changes discontinuously at the interface. For example, 
While the normal stress boundary condition can be satisfied one may wish to predict the motion of the interface between 
at the interface between two fluids that are at rest, the two incompressible fluids that are distinguished by different 
tangential stress boundary condition requires that the fluid densities, p L, p2. The points x, on the interface A are given 
be in motion. It is evident from (5) that surface tension by 
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its gradient tangent to the interface is defined using the In this paper we address the accurate modeling of the 
differential surface operator, V,, normal boundary condition for interfaces between inviscid 

incompressible fluids (p = 0), where the surface tension 
v,=v-v,. (3) coefficient is constant. This condition reduces to Laplace’s 

formula [ 121 for the surface pressure pS, the fluid pressure 
Projecting (1) along the unit normal fi and tangent i jump across an interface under surface tension [2], 

results in scalar boundary conditions for the fluid pressure 
in directions normal and tangent to the interface, respec- ps-p2-p, =cTIc. (9) 
tively. For example, when the fluid on both sides of the 
interface is incompressible, the viscous stress tensor is given Surface pressure is therefore proportional to the curvature 
by (K) of the interface. The higher pressure is in the fluid 

medium on the concave side of the interface, since surface 
tension results in a net normal force directed toward the 
center of curvature of the interface (see Appendix). 

(5) 
A at points x, on A, ps(x,)= IF~~‘(x,)l, where Fii) is the 
normal force component of the total surface force, F,, = 
F’!” + F(‘). Here, we consider interfaces between inviscid 
flzds hating a constant surface tension coefficient, where 
F = F’“‘. The surface force per unit interfacial area can 
thsean be’kritten as 

F,,(x,) = ~4~s) ii( (10) 

(6) 

manifests itself in the normal direction as a force, OK, that 
drives fluid surfaces toward a minimal energy state charac- P(XJ = (P >. (12) 
terized by a configuration of minimum surface area. From 
(6), it follows that spatial variations in the surface tension Consider replacing the discontinuous characteristic func- 
coefficient along the interface (&/as) cause fluid to flow tion by a smooth variation of fluid color F(x) from c1 to c2 
from regions of lower to higher surface tension [2]. Exam- over a distance of Lo(h), where h is a length comparable to 
ples of variable surface tension flows can be found in the resolution afforded by a computational mesh with 
Refs. [ 14181. spacing Ax. This replaces the boundary-value problem at 
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for an inviscid fluid in the presence of surface tension then 
becomes 

fluid 2 

‘interface 

fluid 1 

FIG. 1. Contours of the color function ? separate fluids with color 
values c1 and c2. The transition region (unshaded) has width h. Normals, 
given by ri = V?/V?l, are calculated at vertices of computational cells lying 
in the interface region. Surface tension forces, F,,, are calculated at cell 
centers from the divergence of A. 

the interface by an approximate continuous model and 
mimics the problem specification in a numerical calculation, 
where one specifies the values of c at grid points and inter- 
polates between. Contours of constant values of the color 
shown in Fig. 1 illustrate the properties of the smoothed 
variation produced by interpolation. In Fig. 1, the interface 
is replaced by a transition region that is not aligned with the 
grid. Within the transition region, there are nested contours 
of Z(x), where c, < ? d c2, whose curvature K varies slowly 
from contour to contour when oh < 1. 

c Y(x) d’x = h3, (17) 
v 

that Y have bounded support, 

9(x) = 0 for 1x1 3 h/2, (18) 

that Y be differentiable, and that Y decrease monotonically 
with increasing 1 x /. An example of an interpolation function 
with these properties is the B-spline, which is described by 
de Boor [ 191. 

The interface where the fluid changes from fluid 1 to 
fluid 2 discontinuously is therefore replaced by a continuous 
transition. It is no longer appropriate to apply a pressure 
jump induced by surface tension at an interface. Rather, 
surface tension should act everywhere within the transition 
region. 

The interpolation function is defined so that the mollified 
color, E(x), approaches the characteristic function, c(x), as 
the scale length h -+ 0, 

lim i’(x) = c(x). (19) h - 0 

Consider a volume force, F,,(x), that gives the correct 
surface tension force per unit interfacial area, F,,(x,), as 
h + 0, 

Further, F is differentiable because Y is, and 

v?(x) = $1 c(x’) VY(x -x’) d3x’, 
I/ 

lim s F,,(x) d3x = 1 F,,(x,) dA (13) 
h-0 A” AA 

where the area integral is over the portion dA of the inter- 
face lying within the small volume of integration d V. The 
volume AV is constructed so that its edges are normal to 
the surface, and its thickness, h, is small compared with the 
radius of curvature of the interface A. In addition to (13), we 
also require that F,,(x) be localized so that it is zero outside 
the interface region: 

F,,(x) = 0 for Iti( (x-x,)1 3 h. (14) 

Including F,, , the Lagrangean fluid momentum equation 

p$= -VP+ F,,, (15) 

where p is the density, u the velocity, and p the pressure. 
To formulate the volume force, one begins by defining a 

mollified color, F(x), that varies smoothly over a thickness 
h across the interface by convolving the characteristic 
function, c(x), with an interpolation function, ,4”, 

S(x) = $1, c(x’) Y(x’ - x) d3x’. (16) 

We require a normalization for Y in terms of the positive 
constant h, 

(20) 

where the volume of integration contains the support of Y. 
Using Gauss’ theorem and noting that c(x) is constant 

within each fluid, one can convert the volume integral to an 
integral over the interface A, 

vi(x)=Fj- ri(x,)Y(x-x,)dA, (21) 
A 

where [c] is the jump in color, [c] = c2 - c,. 
From the integral in (21), one computes a weighted mean 

of the surface normal. Since Y has bounded support, 
the portion of the surface contributing to the integral is 
Lo(h’). Define x,~ as the point on A from which the normal 
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direction to A, fi(x,,,), passes through x. Then xSO is the B. Properties of F,,(x) 
surface point closest to x. The integral in (21) is, approxi- 
mately, In summary, the volume force, F,,(x), has the following 

lr 
properties: 

I 
72 J ri(x,)Y(x-x,)dA 1. 

A 
The volume force in the transition region, where the 

color varies smoothly from c1 to c2, is designed to simulate 
1 

= 2 i(%o) s 
h 2 

A 
Y(x-x,)dA+Q z 

(( >> 3 (22) 
the surface pressure on the interface between the fluids. 
Thus, the line integral of F,,(x) across the transition region, 
e.g., from P, to P, in Fig. 1, is approximately equal to the 

where R is the radius of curvature of the surface at xSO. One conventional surface pressure (x, is the interface point on 
can bound the integral in (22) by the line P, P,): 

1 
h2 I Wx -x,) dA <9(x -x,,,). 

A 

As h + 0, 9(x - x,,,) is zero everywhere but x = xSO, and 
d?(x) 

the corresponding limit of the integral of V?(x) across the CI 
Mx) fi(x) ccl 

interface is given by = mc(x,) fi(x,) for h>O. (29) 

lim 
h-0 s 

6(x,,) -W(x) dx= [cl. (24) 2. In the limit that the width of the transition region in 
a direction normal to the interface goes to zero (h + 0), the 

Thus, the limit h -+ 0 of V?(x) can be written volume force becomes 

lim VC(x)=A[c] S[ri.(x-x,)] =Vc(x). (25) lim F,,(x) = F,,(x) X%x,). (x -x,)1, (30) 
h-0 h-0 

This delta function can be used to rewrite F,,(x,) as a which yields the conventional surface pressure at x, given 

volume integral for h = 0: by (9). 

= s F,,(x) b[fi(x,) . (x - xS)] d3x 
V 

= 
s 

m(x) ii(x) cS[iz(x,). (x - x,)] d3x. (26) 
V 

The delta function converts the integral of F,,(x) over a 
volume V containing the interface A to an integral over A of 
F,,(x,) evaluated at that surface. The integral relation in 
(26), an identity for discontinuous interfaces (h = 0), can be 
used to approximate interfaces having a finite thickness h 
when (25) is substituted for the delta function. Upon 
substituting (25) into (26), we find that 

I F,,(x,) dA = lim s Wx) d3X. 
4x) ccl (27) 

A h-0 y 

By comparing (27) with (13), we identify the volume force, 
F,,(x), for finite h as 

V?(x) 
F,,(x)= 04x1 ccl . (28) 

III. NUMERICAL IMPLEMENTATION 

A. Choice of the Color Function 

For cases of incompressible flow, there is a natural 
alternative to the definition of Z(a) by (16) in terms of an 
interpolation function. Instead we set 

S(x) = P(X) (31) 

at grid points, with p(x) derived from the evolution 
equation (15). The volume force is still given by (28). 

The transition region thickness is then of the order of the 
grid spacing and, at points outside the transition region, 
F(x) has the values p, , p2 in fluids 1, 2, respectively. The 
interface between the fluids is given by the surface 
P(xs)=th +Pz)‘<P). 

One can multiply the integrand on the right side of (27) 
by a function g(x) = Z(x)/(c) without changing the value 
of the integral in the limit h + 0, since at the interface 
x =x, and g(xS) = 1. If, for incompressible flow, we use 
E(x) = p(x), then g(x) is given by 

g(x) = P(X)/(P), (32) 
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and the volume force in (28) when multiplied 
becomes 

F,,(X) = OK(X) F$J 

3UKrACC 

by g(x), 

(33) 

With this modification, fluid acceleration due to surface 
tension modeled as a volume force density depends only on 
density gradients, not on the value of the density itself. Thus, 
if F,,(x) in (33) is substituted into (15) 

(34) 

When the acceleration due to surface tension is independent 
of the density, neighboring contours in the transition region 
tend to remain a constant distance apart under the action of 
surface tension. Denser fluid elements in the transition 
region experience the same acceleration as lighter fluid 
elements when g(x) is included in F,,(x). Otherwise, the 
interface tends to thicken when F,,(x) is directed toward the 
fluid having the smaller density, and to thin when F,,(x) is 
directed toward the fluid having the larger density. 

B. Evaluation of Curvature 

The curvature of a surface A at xs, K, is calculated from 

K= -(v.ti), (35) 

where ri is the unit normal to the surface. A derivation is 
included in an appendix for completeness (see also Ref. 
C6, p. 23, Eq. (5.411). 

In the CSF model, the interface is replaced by nested 
surfaces of constant color, whose normals are gradients of 
the mollified color function, 

n(x) = V?(x). (36) 

The unit normal is thus 

W(x) 
G(x) = ,vF(x), (37) 

It follows that the expression, u V?, which is needed to 
evaluate the surface volume force, is given by 

KVI?= -n(V.fi), (38) 

where we have used (36) and (37). Since Vi: is nonzero only 
in the transition region, the surface volume force also is non- 
zero only in the transition region. 

C. Quadrature 

Because the contributions to the surface tension force 
come from the small portion of the computation mesh in 
the neighborhood of the interface, difhculty in formulating 
sufficiently accurate finite difference expressions might be 
expected. It turns out that low-order approximations may 
be used, provided one begins with a form of the volume 
force that emphasizes the region of maximum gradient. This 
allows one to apply boundary conditions with no more 
difficulty than with other terms, such as pressure. 

It is straightforward to approximate the volume force 
density in (28). The expression K V? in (38) is the product of 
a first-order and second-order spatial derivative of c”. The 
coefficients e and [c] are parameters. 

Modeling surface tension requires some special con- 
siderations, since the effects of surface tension should be 
confined to the neighborhood of the interface. To simplify 
the application of boundary conditions and to localize the 
domain of dependence of the volume force, an approxima- 
tion with compact support is sought. To maintain the 
integrity of the transition region, the volume force should 
not change sign along the radius of curvature. These 
requirements are met by the MAC [21] and ALE [22] 
formulations described below. 

Let us consider how to compute surface effects in the 
MAC and ALE methods. To model surface tension with the 
CSF model at interfaces separating incompressible fluids 
computed with either the MAC or ALE methods, the color 
function, as in (3 1 ), is chosen to be the fluid density, which 
resides at cell centers in both methods. The curvature K 
therefore also will be cell-centered. We choose to locate F,, 
at cell centers in the MAC method and at cell vertices in the 
ALE method. The normal vectors at cell centers must be 
interpolated from nearby cell vertices in the ALE method 
and cell faces in the MAC method. 

Let a two-dimensional computational domain be parti- 
tioned in Cartesian geometry into a regular, orthogonal 
mesh with mesh spacing Ax and Ay. The center of each cell 
is located at (x ,,,, -vi, j), where xi,, = i dx, 1 < if A’, and 
yi,, = j Ay, 1 < j 6 M. Cell vertices and faces are located at 
odd multiples of Ax/2 and Ay/2, i.e., at (x,, ,ir,, + ,,2, 
-Vi+ 112,1+ 112 1 and (x,+ I,2,,2 yj+ ,iz. ,), respectively, where 
.Y;+ I,>,j = x,, i + Ax/2 and Y;,, + 1,2 = yip, + Ay/2. Densities 
pi,, and pressures pi, j are stored at cell centers, (xi, j, y,,,). 
Since cell-centered density is used as the color function, set 
c",,j= Pi.,. 

1. ALE-like Scheme: Indirect Differentiation qf the Unit 
Normal 

From (28) and (38) the volume force density at a vertex 
is given by 

(Fsv)i+1/2,,+1/2= -~ni+l:r,j+,,2(V.li);+l;2.,+1:2. (39) 
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The curvature in (35) also can be written 

(40) 

Finite difference approximations to (40) result in division 
by the arithmetic mean of Inl. Similar approximations to 
(35) result in division by the harmonic mean of Inl. As a 
result, the principal contributions to (35) come from the 
edges of the transition region rather than the center. Thus, 
numerical approximations to (40) for which the principal 
contributions are where the gradient of the color is 
maximum, give better results in practice. 

Vertex-centered normal vectors are obtained by differen- 
tiating the color function in the-four surrounding cells. For 
example, the normal vector at the top right vertex of cell 
(i, j ) is given by 

~;+I,j+C"i+l,j+r-~i.j-~,,j+I 

2Ax 1 
c";,j+~+~;+l,j+l-cli,j-zli+l,j 

2Ay 
1. (41) 

Other vertex-centered normal vectors can be found in a 
similar fashion by translating the i andj indices in the above 
expression. The curvature in (40) is calculated at cell 
centers. The divergence of n for cell (i, j) is calculated from 
the vertex-centered normals and is given by 

= & [In, if l/2,, + l/2 + ?xi+ l/2.,- l/2 

-n.~i~,~2,,,~f2--n,i~,i2,j-1/2 1 
1 

+- Cnvi+ l/2,/+ l/2 + ny i- 1/2,j+ l/2 
2Ay 

-n,.;+,f2,,-1/2-n,,i~,jz,j~IjZ I. (42) 

The derivative of the magnitude of the normal vector, (nl, in 
the direction of the cell-centered unit normal, n, j, is given 
by 

( > 
3L.v InI 
Ini.jl 

where the cell-centered normal is the average of vertex 
normals, 

~i.i=~(~i+1/2,~+1/2+~i+1~2,,~1/2 

+n,- 1/2,.,+ 1/2 +n,- 1j2,,- l.!2 ) . (44) 

Vertex-centered values of F,, are needed for the computa- 
tion of fluid acceleration due to surface tension in the ALE 
method, since the ALE acceleration is calculated at cell ver- 
tices. The required vertex-centered values are obtained by 
interpolating the curvature, evaluated using (42)(44), from 
the four neighboring cell-centered values, and then multi- 
plying by the vertex normal in (41). 

2. MAC-like Scheme: Direct Differentiation of the Unit 
Normal 

In the MAC scheme [21], the x- and y-components of 
the normals reside at cell faces on lines of constant i 
and j, respectively, in direct correspondence to the x- and 
y-components of the velocity field. The components of 
the normal are not co-located as in the ALE scheme, but 
are instead located on separate faces of cell (i,j), with 
the x-component at the right face, (xi+ ,,2,,, Y~,~), and the 
y-component at the top face, (xi, j, yi,, + ,,,2). 

The cell-centered normal vector, n,,,, is computed from 
linear interpolation of nearby face-centered components, 

“i,,=~.t(n.~i+,,2.,+n.~i~1/2,,} 

+Pi{nyi.,+1,2+n,.j,, 1,2)r (45) 

and a cell-centered curvature, (V . fi)i, j, is derived from the 
divergence of face-centered unit normals, 

AY lni.,+1,21 - lni.,-1O [ 

n,, i. , + 1/2 n., i,,- 112 1 ’ 
(46) 

Face-centered normal vector magnitudes are given by, for 
example, 

/ni+,,2,jl=(n2,i+,,2.,+nti+~,‘2.,)1’2 

for the right face (i+ i,j) of cell (i,j), and 

(47) 

In r.,+l/21=(n~i,~+1/2+n~i,,+*,2)"2 (48) 

for the top face (i, j + f) of cell (i,j). Components of the 
normal vector are trivial in the x- and y-directions at faces 
of constant i and j, respectively. For example, 

n.i+,123j= 
ci+ I, j - ci,~ 

Ax (49) 
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is the x-component at the right face (i + i,j) of cell (i, j), 

i: 

n,i,j+112= 
l,J+ 1 -‘i,J 

AY 
(50) 

is the y-component at the top face (i, j + 1) of cell (i,j). 
Other components must be obtained by interpolation, such 
as in computing the x-component at faces of constant j, 
where 

n,, j+ 1,2 = i(nri+ 1/2,j+ si+ 1/2,/+ I 

+%i 112,~ +%-I~~J+I) (51) 

is the x-component at the top face (i, j + $) of cell (i, j). 
Similarly, the y-component at faces of constant i must also 
be interpolated, such as the y-component at the right face 
(i+ $,j) of cell (i,j): 

n,.,+,i2,,=~(n.,i,,+1,2+n,i+,,J+1,2 

+n,.,,i-1/2+n.,i+,,j~1,2). (52) 

Examination of the example finite difference expressions in 
(45)-(52) reveals that a MAC-based, cell-centered formula- 
tion of the volume force density in (28) can be computed 
solely from normal vector components n, and ny stored at 
the right and top faces of each computational cell, respec- 
tively. The computational storage and expense is the same 
as in the ALE scheme, with only one, mesh-wide vector 
array (n, j) required. 

Face-centered values of F,, are needed for the computa- 
tion of fluid acceleration due to surface tension in the MAC 
method, since MAC acceleration is calculated at cell faces. 
The required face-centered values are obtained by inter- 
polating from the two nearest cell-centered values, F,, I, j. 

D. Boundary Conditions: Wall Adhesion 

The effects of wall adhesion at fluid interfaces in contact 
with rigid boundaries in equilibrium can be estimated easily 
within the framework of the CSF model in terms of tIeq, the 
equilibrium contact angle between the fluid and wall. The 
angle Beq is called the static contact angle because it is 
experimentally measured when the fluid is at rest. The equi- 
librium contact angle is not simply a material property of 
the fluid. It depends also on the smoothness and geometry 
of the wall [23]. 

The normal to the interface at points x, on the wall is 

n = n,,,, cos O,, + ri, sin Beq, (53) 

where h, lies in the wall and is normal to the contact line 
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between the interface and the wall at x,, and fiwal, is the unit 
wall normal directed into the wall. The unit normal ri, is 
computed using (36) with the fluid color I? reflected at the 
wall. 

Wall adhesion boundary conditions are more complex 
when the contact line is in motion, i.e., when the fluid in 
contact with the wall is moving relative to the wall [23]. 
The equilibrium wall adhesion boundary condition in (53) 
may have to be generalized by replacing O,, with a dynamic 
contact angle, edr that depends on 
conditions. 

locai fluid and wall 

E. Stability 

In the CSF model, the Lagrangian velocity field of fluid 
elements in the presence of surface tension is advanced in 
time with the momentum equation in (15). We consider the 
stability of a first-order, time discretization of ( 15) by which 
the velocity field u is advanced from time t = n At to 
t=(n+l)At, 

P(“~+;;“~)= -Vp”+‘+Ftv, (54) 

where the density, p, and volume force density, F,,, are 
taken at the old time (n) and pressure, p, is taken at the 
advanced time (n + 1). The finite difference expression in 
(54) can be written as 

At 
U n+‘=fiLyvpn+l, 

P 

where the tilde velocity, V, is equal to the old velocity II”, 
plus the change in velocity resulting from surface tension 
forces, 

+f+&F” 
P" sv' 

Upon taking the divergence of (55), one finds that 

(56) 

(57) 

where we have made use of the requirement that for incom- 
pressible flow the advanced-time velocity field must be 
solenoidal: 

v.u . n+l=o (58) 

From (57), it is evident that a solution of a Poisson equa- 
tion for the pressure gives the advanced-time pressure field 
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in the presence of surface tension. This is an equation whose 
solution is already well within the framework of the MAC 
method [21] and many other incompressible flow methods. 
The CSF model for surface tension therefore does not place 
new or special requirements on conventional algorithms 
used for finding the pressure field in incompressible flow. 
Surface tension is treated in the pressure solution no 
different from any other body force, i.e., gravity. 

There is a stability condition in solving for the advanced- 
time pressure field with (56) and (57). The explicit treatment 
of surface tension is stable when the time step resolves the 
propagation of capillary waves, 

c4 At, 1 
-<-, 

Ax 2 (59) 

where c( is the capillary wave phase velocity [24]: 

ok [ 1 
112 

cl= ~ 
PI+P2 . 

(60) 

The phase velocity in (60) of a capillary wave on an inter- 
face depends upon the wavenumber k, the parameter 0, and 
the fluid densities, p, and p2, on both sides of the interface. 
The conservative value of $ on the RHS of (59) guards 
against the case of two oppositely-moving capillary waves 
entering the same cell from opposite sides. The maximum 
allowed time step can be estimated using the maximum 
phase velocity. From (60), this occurs for the wavenumber 
k Inax = n/Ax in a finite-difference scheme, corresponding to 
the minimum resolvable wavelength 2Ax, where Ax is the 
grid spacing. Upon substituting (60) into (59) with k = k,,, 
and using (p) = i(p, + p2), the result is 

(61) 

for the time step constraint imposed by an explicit treatment 
of surface tension. 

The surface tension time step constraint in (61) can limit 
Ar to small values, since At, cc (Ax)~‘~. An implicit treat- 
ment of surface tension would remove this constraint. 

IV. NUMERICAL RESULTS 

We now present the results for several standard static and 
dynamic problems with surface tension to illustrate the 
flexibility and accuracy of the CSF model. These examples 
supplement further comparison with theory and other 
numerical models in Ref. [27]. The application of the CSF 
model to a liquid drop problem as implemented in a VOF 
(volume-of-fluid) code [ 271 is illustrated by an equilibrium 
and oscillating drop calculation. (In this calculation, inter- 

face reconstruction using the VOF method [26] maintains 
the integrity of the interface.) The application of the CSF 
model to the motion of a Rayleigh-Taylor unstable interface 
with surface tension as implemented in an ALE code [3 1 ] is 
described. (In this calculation, there is no interface recon- 
struction.) The imposition of the contact angle boundary 
condition is illustrated by two initial, boundary-value 
problems at extreme contact angles. Finally, a low-gravity 
spacecraft propellant reorientation and mixing problem 
demonstrates that CSF can model surface tension at fluid 
interfaces with complex topology. This illustrates a capa- 
bility to follow automatically the breakup of interfaces that 
has been absent from other numerical methods [20]. 

A. Equilibrium Rod 

In the absence of viscous, gravitational, or other external 
forces, surface tension causes a static liquid drop to become 
spherical. Laplace’s formula for an infinite cylinder sur- 
rounded by a background fluid at zero pressure, (9) gives 
the internal drop pressure, pdrop, to be 

Pd rap = UK = a/R, (62) 

where R is the drop radius. Results from the CSF model in 
Cartesian geometry using a two-dimensional 6 x 6 (cm) 
computational domain are compared with (62). We use a 
regular, orthogonal grid with uniform mesh spacing Ax and 
Ay, which partitions the domain into either a 30 x 30 low 
resolution (Ax = Ay = 0.20 cm) or a 60 x 60 high resolution 
(Ax = Ay =O.lO cm) mesh. A fluid drop with radius 
R = 2 (cm), density p = 1 (g/cm’), background density 
p = 4 (g/cm3), and surface tension coefficient CJ = 23.61 
(dynes/cm), is centered at the point (3, 3). From Laplace’s 
formula, (62), the pressure jump is 11.805 (dynes/cm2). This 
value is compared with the mean computed drop pressure 
obtained with the CSF model, (p), defined as 

where the sum is over the N, computational cells lying 
within the drop that have density p > 0.99. From the mean 
computed drop pressure in (63), a mean drop curvature, 
(K ), can be computed as 

(“> = (P)/fl, (64) 

and compared with the prescribed radius. Another measure 
of the relative error between the theoretical and computed 
drop pressure is given by the rms error, 

L c;j= 1 (P,,, - &k,p)2 ‘I2 
2 

Nd P& 1 (65) 
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TABLE I 

Computed Mean Drop Pressure (p) and Mean Square Pressure 
Error as a Function of Mesh Spacing (R/Ax) and Finite Difference 
Scheme Defined in the Text 

R/Ax <P YPdrop Mean square error 

Unsmoothed ALE (P = p) 

10 
10* 
20 

0.996 3.09 x 1o-2 
0.957 1.01 x 10-l 
0.982 2.84 x lo-* 

Smoothed ALE (c”= 0) 

10 
20 

1.034 5.56 x lo-* 
1.016 2.82 x lo-* 

Unsmoothed MAC (F = p) 

10 
20 
20’ 

2.938 1.97 x loo 
4.68 1 3.73 x loo 
1.230 2.75 x 10-l 

Smoothed MAC (f = fi) 

10 1.153 1.65 x 10-l 
20 1.043 5.14 x lo-* 

Note. The equilibrium planar drop, with density p= 1 and radius 
R = 2, has a surface tension coefficient e = 23.61 at the interface with a 
background fluid of density p = i. The asterisk (*) denotes a result using 
Eq. (35) for the curvature instead of Eq. (40). The dagger (+) denotes a 
result using Eq. (28) for the volume force instead of Eq. (33). 

A 

One consequence of the formulation of the CSF model, in 
which the volume force F,, is given by anK/[c], is that one 
can use a E to calculate K different from the c” used to 
calculate n. The coefficient n in (39) has its greatest 
magnitude in the center of the transition and falls to zero 
outside. It emphasizes the values of K that are local to the 
fluid interface. Thus, one should use data to calculate an n 
that is as peaked as possible in the interface to localize the 
surface forces. On the other hand, a smoother Z, i.e., one 
that changes more slowly through the interface, can be used 
to obtain a smoother K. The term nk- will then still be 
localized to the neighborhood of the interface. The drop 
results in Table I and Fig. 227 are obtained with n com- 
puted using c”= p, and K computed using either ? = p or 
? = p, a smoothed density. The smoothed density is com- 
puted by convolving the density with a B-spline of degree I 
[19] #‘)(1X’-x1.h) with I= 2, where Y(l) # 0 only for 
Ix’-;1 < (I+ l)h/; =;h/2. At mesh points, the smoothed 
density is given by 

,8i,j= i pi,,j.Y(‘)(x;,,j~-x,,j; h) 
i’,.i’= 1 

X Ycf)(Yi,,j’ - J’;,,; h), (66) 

where pi,j is the value of p at xi,j = ,-Z-i Ax + jj Ay and the 
sum gathers contributions from the nine values of pi,i 
(in 2D) within the support of Yc2). 

Table I lists computed results obtained with the CSF 
model, using for the volume force F,, at the drop interface. 

B 

FIG. 2. (A) Contours of constant density (p) mark the transition between a drop and a background fluid. With surface tension, o = 23.61, the surface 
tension force vectors (F,,) shown in (B) are calculated with the CSF model using the density as the color F. The surface forces in (B) are largest near 
the (p ) = 0.75 contour line. The computation is performed using the ALE scheme on a 30 x 30 mesh with Ax = Ay = 0.2. 
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The results consist of mean drop pressure (p) and mean 
square error as a function of mesh spacing (expressed as 
R/Ax), the mollified color ? used for the calculation of rc, 
and the finite difference scheme used for F,,, i.e., either 
MAC or ALE as discussed in Section IILC. 

Several important points need to be made about the 
results in Table I. First, it appears that the MAC scheme, 
which differentiates ri directly, leads in general to greater 
rms errors than the ALE scheme, which differentiates ri 
indirectly using (40). Normalizing n to ri before differentia- 
tion introduces the possibility of order unity errors in com- 
puting V. ri, as seen by the relatively high errors for the 
MAC scheme with c” = p. Second, using ? = i?, the smoothed 
density, decreases the rms error in almost all cases. Com- 
puted values of ( p ) and (K ) in those cases are all within 
5 % of theory, with some high resolution cases being within 
less than 1% of theory. Third, there are large errors with the 

MAC scheme when moderate to coarse zoning is used to 
resolve the interface. Fourth, the inclusion of the function 
g(x) = p(x)/(p) in the expression (33) for F,, appears to 
result in a small increase in error in the ALE scheme, but a 
large increase in poorly resolved MAC calculations. 

The quantities listed in Table I represent results gener- 
ated in the first computational cycle, could easily (and 
typically do) change by a few percent when tabulated after 
a few hundred cycles. Each finite difference scheme com- 
putes a slightly different drop curvature because the finite 
difference approximation to K, derived from identical den- 
sity data, is not the same for the MAC and ALE schemes. 
The value of K appears to depend on small displacements of 
the interface relative to the mesh. To reach equilibrium, the 
drop adjusts its shape until the forces are balanced. 

The drop results are illustrated in Fig. 2-7. The density 
contours in Fig. 2A illustrate the finite thickness interface 

FIG. 3. The smoothness of curvature, rc, depends upon the smoothness of the color function, P. Choosing f =p (the drop density), as in (A), results 
in the curvature shown in (C); choosing P=p (the smoothed drop density), as in (B), results in the smoother curvature shown in (D). The computed 
curvature is plotted in (C) and (D) as a product of curvature and radius, since KR = 1 for a planar drop. The computation is performed using the ALE 
scheme on a 30 x 30 mesh with Ax = Ay = 0.2. 
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surrounding the drop, resulting in surface forces that are 
largest near the (p) contour line shown in Fig. 2B. Surface 
plots of i: = p and c” = p are shown in Figs. 3A and B, respec- 
tively. The smoothing of the density increases the thickness 
of the transition region between the drop and background 
fluid to about 4 of the drop radius. The computed KR, which 
should be equal to 1, is shown in Fig. 3C and D for the ALE 
scheme. The smoother K in Fig. 3D results when a smoothed 
,8 is used as the color function, giving a result of KR nearly 
equal to 1 everywhere except along the diagonals to the 
mesh where relative errors are 20 %. Without smoothing p, 
the errors in K are larger. 

Figures 3-7 allow one to compare the computed pressure 
and the surface force within the interface region for the 
MAC and ALE schemes using p and D as the color function. 
Without smoothing, the surface forces vary as shown in 
Fig. 4A, but the resulting pressure in Fig. 4C is smooth 
nearly everywhere. Smoothing p yields slightly smoother 
pressure, Fig. 4D. One can explain the insensitivity of the 

pressure to variations in the surface force by noting that the 
force is a source term in the Poisson’s equation from which 
the pressure is computed. Solving Poisson’s equation for the 
pressure requires integrating the surface force twice, which 
considerably reduces the effect of small scale variations in its 
value. 

Figures 5 (with a p curvature color function) and 6 (with 
a p curvature color function) illustrate the effect of 
smoothing on the variation of ?, Inl, K, and IF,, 1 along 
the drop equator (y = 3). Drop curvature in Fig. 6C is 
smoother than the curvature in Fig. 5C. The curvature K in 
Fig. 6C significantly varies (KR is constant) because 
the drop interface thickness is comparable to the radius 
of the drop. The normals in Fig. 5B and 6B, however, 
are the same, since the normal is defined using p in both 
cases. The net surface forces in Figs. 5D and 6D are virtually 
identical, because the normal vector weights more heavily 
those values of K near the interface. 

The results with MAC suggest that smoothing is 

FIG. 4. Whether the color is smoothed affects the surface tension forces IF,, 1, as shown in (A) and (B) corresponding to Figs. 3A and B. The drop 
pressure in (C) and (D), however, is not sensitive to smoothing. (The drop pressure should be o/R = 11.805.) The computation is performed using the 
ALE scheme on a 30 x 30 mesh with Ax = Ay = 0.2. 
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FIG. 5. Plots of (A) the mollified color function (E=p); (B) the 
magnitude of the normal vector (ml); (C) the curvature (K); and (D) the 
magnitude of the surface tension force (IF,, I) in a cut along the midline of 
the drop shown in Fig. 2. The computation is performed using the ALE 
scheme on a 30 x 30 mesh with Ax = Ay = 0.2. 

necessary to obtain an accurate, uniform drop pressure. 
Without smoothing, relative errors in the curvature listed in 
Table I are nearly lOO%, but with smoothing, the com- 
puted surface forces and drop pressure, shown in Figs. 7A 
and 7C, look almost identical to the results obtained with 
the ALE scheme. 

Convergence of the CFS model to theory is demonstrated 
by the results in Figs. 7B and D for the drop computed with 
fi and the ALE scheme on a 60 x 60 mesh. Increasing resolu- 
tion localizes the surface forces and yields a uniform ring 
around the circumference of the drop. The pressure in 
Fig. 6D is apparently uniform with a mean value of 
( p ) = 11.991, compared with a theoretical value of 11.805. 
The mesh interval is 5 % of the drop radius. 

B. Nonequilibrium Rod 

When a rod or cylindrical drop is deformed, capillary 
waves are induced that cause the drop surface to oscillate 
about its equilibrium shape. In the numerical calculations, 
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FIG. 6. Plots of (A) the mollified color function (?=p); (B) the 
magnitude of the normal vector (ml); (C) the curvature (K); and (D) the 
magnitude of the surface tension force (IF,, I) in a cut along the midline of 
the drop shown in Fig. 2. The computation is performed using the ALE 
scheme on a 30 x 30 mesh with Ax = Ay = 0.2. 

the oscillations damp because of numerical dissipation. This 
behavior is observed in a numerical calculation when an 
initially square drop responds to unbalanced surface tension 
forces. The results are computed with a 2D, incompressible 
hydrocode [27] using the VOF method to describe the free 
surface [26]. On a 30 x 30 grid with Ax = Ay = 0.25 cm, 
a square ethanol drop with p = 0.79788 g/cm’ and 
cr = 23.61 dynes/cm evolves as shown in Fig. 8. At a 
sequence of times, t = 0, 0.05, 0.1, 0.2, 1.0, and 2.0 s, the 
oscillations of the surface of the drop are apparent. At 
t = 2.0 s, the drop is nearly circular in cross section, and 
the amplitude of the capillary waves is a fraction of its 
maximum value. The small, residual deviation from the 
equilibrium circular shape is due to numerical error 
(R/Ax - 6). Large deviations in the curvature that were 
apparent in the equilibrium calculation result in small, 
bounded variations in the equilibrium shape. 

Disturbingly, despite the dissipation in the numerical 
calculations, the kinetic energy does not decay to zero even 
after long times. The kinetic energy oscillates with constant 
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FIG. 7. Computed planar drop results, analogous to those of Fig. 4, using the MAC scheme in (A) and (C) and the ALE scheme on a 60 x 60 mesh 
with Ax = Ay = 0.1 in (B) and (D). In both cases the smoothed density, p, is used for the curvature calculation. 

FIG. 8. Surface force vectors are shown on an initially-square ethanol 
drop in zero gravity at times of (A) 0.0, (B) 0.05, (C) 0.10, (D) 0.20, (E) 1.0, 
and (F) 2.0 s. The initially square shape of the drop results in very strong 
surface forces at the high-curvature corners, setting the drop into oscilla- 
tion. The period of oscillation is approximately 0.40. Numerical dissipation 
eventually damps the oscillation, causing the drop to approach an equi- 
librium spherical shape 

amplitude for many wave transit times. Since energy is 
dissipated, there must be a source that supplies enough 
energy to sustain the oscillations at constant amplitude. 
Animations of computational results indicate that the VOF 
treatment itself provides the driving force. One can see in 
the animations that small displacements of the surface cause 
discontinuous changes in the location and orientation of the 
interface with VOF. These occur in phase with the oscilla- 
tions of the surface and provide a small impulse through the 
surface tension to sustain the oscillations. 

C. Rayleigh-Taylor Instability 

When a heavy fluid is supported against gravity by a light 
fluid, a Rayleigh-Taylor (R-T) instability develops in which 
perturbations of the interface grow exponentially in time as 
exp(nt) for small amplitudes. With surface tension, the 
growth rate n is given by [6] 

k20 

dP I + P2). 
(67) 

581/100/2-10 
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where k is the wave number of the perturbation, g is the 
gravitational acceleration perpendicular to the interface, 
and A = (pz - p,)/(pi + p2). From (67), one can compute a 
critical surface tension, oc, for which n* = 0. Following Daly 
[29], a stability parameter @ can be defined 

CD = u/u,, (68) 

such that when @ > 1, n is imaginary and perturbations of 
the interface oscillate. 

In the results that follow, we express time and velocity in 
units of r and gr, respectively, where z is the R-T growth 
time, n ~ ‘, for CJ = 0. The Atwood number is A = 0.6. The 
instability is initiated with a perturbation of the form 
0.035 cos(kx) given to the vertical velocity component at 
the interface. The wavenumber k is set equal to $. 

The calculations shown in Fig. 9 are performed on a 
uniform, rectilinear 30 x 90 zone mesh with PLUTO, an 
ALE code for flow in two dimensions [31]. The boundary 
conditions for the pressure equation which yields the 
incompressible, inviscid flow solution are Neumann on all 
boundaries. In PLUTO. there is no interface tracking or 
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1 

FIG. 9. The Rayleigh-Taylor unstable interface between a heavy and 
light fluid is shown. The deformation of the interface, defined as the (p ) 
contour line, is shown at a time of 10 for the stability parameter @ equal 
to (A) 0.0, (B) 0.29, (C) 0.58, (D) 0.88, (E) 1.02, and (F) 1.17. 

reconstruction as there is in VOF [26]. Instead, the density 
gradient in the transition region is convectively transported 
similarly to all other dependent variables using a third 
order, monotonicity-preserving scheme developed by Meltz 
[32]. Consequently, there is some numerical diffusion of the 
interface. 

Comparison of the computed R-T growth rates with 
theory provides a delicate test of the accuracy of the CSF 
model. One can ask whether perturbations are stable when 
@ > 1. Stability requires that the surface tension force 
counteract the gravitational force in detail. 

In Fig. 9, the interface, defined as the (p) contour, is 
depicted at a time of 10 for values of @ equal to 0.0, 0.29, 
0.58, 0.88, 1.02, and 1.17 on a computation mesh with 30 
zones in the x-direction. As @ increases, the deformation 
decreases. With @ = 0.29, the bubble and spike that are 
prominent with @ =0 have not yet developed. With 
Cp = 1.17, there is no apparent deformation of the interface. 
However, the numerically computed linear growth rate as 
shown in Fig. 10 is not zero even for @ > 1. The @ = 1.17 
growth rate, as computed from the variation of the kinetic 
energy with time, is still 10% of the value with @ = 0. For 
comparison, results with 15 zones in the x direction for 
@ = 0.58 and @ = 1.17 are shown in Fig. 10. The results with 
the coarser grid are less accurate. 

Three additional points in Fig. 10 correspond to calcula- 
tions in which diffusion is added to the mass continuity 
equation. Adding mass diffusion to the case @ = 1.17 with 
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FIG. 10. Theoretical Rayleigh-Taylor instability growth rate curve 
(line) and computed growth rates (points) are plotted as a function of the 
stability parameter @. Points designated with diamonds and squares 
correspond to 15 and 30 zones along a wavelength, respectively. The 
solid diamond points, which result from adding a mass diffision term in 
the continuity equation, show that diffusion is stabilizing for @ < 1 and 
destabilizing for @ > 1. 
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B 

FIG. 11. (A) Normal vectors n, (B) surface forces F,,, and (C) pressure contours after one computational cycle in a 4-cm deep pool of water which 
has been given given a wall adhesion boundary condition of 0,, = 5” on the cylindrical tank walls. The computation is performed on a 20 x 40 mesh with 
Ar = AZ = 0.25 cm. 

diffusivity /3 = 9.0 x 10P4g2r3 causes the growth rate to 
increase from 0.18 to 0.25. (Doubling the diffusivity to 
b = 1.8 x 10P3g2r3 increases the growth rate further, but by 
a smaller amount.) Adding mass diffusion to the case 
@ = 0.58 with /I = 6.0 x 10-3g2r3 causes the growth rate to 
decrease from 0.54 to 0.46. Linear dispersion theory predicts 
that mass diffusion decreases the growth rate for @ < 1 and 
increases the growth rate for @ > 1 [33], just as observed in 
the numerical calculations. 

One can conjecture that mass diffusion is the cause for the 
unstable flow for @ > 1. Other results not shown indicate 
how this may occur. There is persistent circulating flow, 
even for @ > 1. This causes numerical diffusion in the 
calculation of convective transport. Diffusion of the heavier 
fluid downward is a source of free energy that drives the 
flow, just as bulk motion of the heavier fluid drives the flow 
in the R-T instability in the absence of diffusion. 

D. Flow Induced by Wall Adhesion 

As an example of the effects of wall adhesion computed 
with the CSF model, consider a shallow pool of water 
located at the bottom of a cylindrical tank. Assume that the 
water interface wants to attain a specified contact angle 8,, 
with the tank wall, different from the initial angle of 90” (a 
horizontal interface). Two different cases are computed in 
Fig. 11-13, one in which the water wets the wall (0,, < 90”), 
and one in which the water does not wet the wall 
(0,, > 90”). The results are computed in cylindrical 
geometry on a 20 x 40 mesh (dr = AZ = 0.25 cm) with a 2D, 
incompressible hydrocode [27] using the VOF method to 
describe the free surface [26]. For the wetting case, the pool 
of water is 4 cm deep and 0,, = 5”. For the non-wetting case, 
the pool of water is 2 cm deep and Be4 = 175”. All external 
forces such as gravity are set to zero. 

Figure 11 displays plots of n, F,,, and pressure contours 

after one computational cycle for 8,, = 5”. The wall 
adhesion boundary condition of (53) is applied to the 
normal vectors n along the tank wall in Fig. llA, resulting 
in the upward surface forces F,, at the identical location as 
shown in Fig. 11B. These wall adhesion forces, the only 
forces in the calculation, in turn generate a pressure field in 
the proximity of the wall (Fig. 11C). 

From the sequence of times in Fig. 12, t = 0.0,0.2,0.4,0.6, 
0.8, and 1.0 s, it is evident that the flow field due to the wall 
adhesion forces for 8,, = 5” causes the water to move up the 
tank walls until the boundary condition in (53) is satisfied. 
For times later than 1 s the water oscillates about the 
meniscus position in Fig. 12F. This is a consequence of the 
kinetic energy in the flow, which builds up as a result of 
the calculation not being initialized with (53) satisfied at the 
walls. 

It is interesting that a “ball” of water evolves from an 
initial shallow pool when the wall adhesion forces are 
specified on every boundary with 8,, = 175”. The water 

FIG. 12. Fluid flow vectors corresponding to Fig. 11 at times of (A) 
0.0, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8, and (F) 1.0 s. 



350 BBACKBILL, KOTHE. AND ZEMACH 

1 c 

FIG. 13. Time sequence of fluid flow vectors in a 2-cm deep pool of 
water which has been given a wall adhesion boundary condition of 
19,~ = 175” on the cylindrical tank walls. The times shown are (A) 0.0, (B) 
0.3, (C) 0.5, (D) 0.7, (E) 0.9, and (F) 1.3 s. The computation is performed 
on a 20 x 40 mesh with Ar = AZ = 0.25 cm. 

behaves in this case like mercury, wanting to separate itself 
from the walls since 8,, is obtuse. The flow field is displayed 
at times oft = 0.0,0.3,0.5,0.7,0.9, and 1.3 s in Fig. 13. A net 
upward momentum, evident in Fig. 13F, is imparted to the 
water ball by the wall adhesion forces, eventually causing it 
to collide with the top wall. 

E. Low-Gravity Fluid Flows 

The success of future long-term space missions depends in 
part upon the safe and efficient handling and storage of 
large quantities of liquid cryogens and propellants. Large 
tanks (approaching l&l00 m3 in volume) with complex 
internal structures will be used to store, handle, and trans- 
port the liquids. Surface tension is typically the dominant 
force governing the fluid behavior in the absence of gravity. 
Modeling these fluid flows poses a significant challenge, 
because an accurate treatment of surface tension is con- 
strained by the complex interface topologies that arise in the 
inherent three-dimensionality of the flow, the multiple 
length scales that are present, and the complicated internal 
and external boundaries of the tanks themselves. 

Computed results using the CSF model for surface 
tension are shown for two types of low-gravity fluid flows, 
jet-induced tank mixing and liquid reorientation, that are 
likely to occur in future space missions. 

1. Jet-Induced Tank Mixing 

Jet-induced mixing of fluid stored in a partially-filled tank 
can prevent excessive thermal stratification of the fluid that 
may occur when the tank walls are exposed to the sun. 
A large radiative heat flux might also lead to boil-off of 
the liquid, depleting the storage volume and possibly 
resulting in an overpressure of the tank. An internal jet at 

A B C D 

FIG. 14. The results of a calculation using the VOF method to advect 
fluid interfaces and the CSF model for surface tension of a partially-tilled 
(50% full of LH, with a 5” contact angle) cylindrical tank (radius 210 cm, 
height 1020 cm), being mixed at zero gravity by a 1 cm/s axial jet located 
at the tank bottom. Fluid velocity vectors are shown at times of (A) 0, (B) 
1000, (C) 2000, and (D) 3000 s. The surface tension prevents the jet from 
penetrating the free-surface. 

the bottom of the tank is proposed to induce mixing and to 
keep the fluid at a nearly uniform temperature. An optimal 
jet design is one with a velocity large enough to maximize 
fluid recirculation without penetrating or disrupting the 
free surface (which destroys the recirculation and mixing). 
The Weber number (ratio of inertial to surface tension 
forces) characterizes the competition between jet inertia and 
surface tension at the free surface. 

Figures 14 and 15 display the computed laminar flow field 
induced by an axial jet located at the bottom of a cylindrical 
tank having elliptical end caps. The results are computed 
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FIG. 15. The results of a calculation using the VOF method to advect 
fluid interfaces and a VOF interface reconstruction mode1 for surface 
tension of a partially-filled (50% full of LH, with a 5” contact angle) 
cylindrical tank (radius, 210 cm, height, 1020 cm), being mixed at zero 
gravity by a l-cm/s axial jet located at the tank bottom. Fluid velocity 
vectors are shown at times of (A) 0, (B) 1000, (C) 2000, and (D) 2900 s. 
The free-surface is disrupted due to surface pressure graininess shortly after 
2900 s. 
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with a 2D, incompressible hydrocode [27] using the VOF .::.:.. 

method to describe the free surface [26]. The jet velocity :. :I; j; ; j 1,. ..:‘. 
and radius are 1 cm/s and 10 cm, respectively, and the fluid 

,,,,,.. B,,III#.II . ,,,,...1%! l(,..,l,,, .?,// 
is liquid hydrogen (LH,), occupying 50 % of the tank 

,;,+ /I 
’ 

volume. The free surface is initialized in an equilibrium 
meniscus position with tIeq = 5”. The computation coarsely 
resolves the tank, which has a radius and height of 210 cm 
and 1020 cm, respectively, with a 14 x 34 mesh that is 
refined along the tank axis of symmetry and wall. The 
Weber number of this system is approximately 8. 1 

The computations of Figs. 14 and 15 are identical except A 

that surface tension is computed in Fig. 14 with the CSF 
model, and in Fig. 15 with an interface reconstruction 
method [ 301 in which the VOF function is used to calculate 
interface curvature instead of the CSF model. The surface 
tension in Fig. 15 is then applied as an explicit pressure 
boundary condition. From Fig. 14 it is evident that a steady 
state, recirculating flow field is induced as a result of the jet. 
The jet does not penetrate the free surface, and the-free sur- 
face retains its equilibrium shape. A free surface disruption, 
on the other hand, occurs in Fig. 15 due to the variations in 
the surface pressure computed from the VOF reconstruc- 
tion. A relatively crude reconstructed interface is used to 
estimate the curvature. This algorithm sometimes fails even 
to give the correct sign of K, leading to surface forces that 
tend to pull the free surface apart, causing a numerically- 
induced disruption as seen in Fig. 15D. The CSF model 
makes more accurate use of the same VOF data, leading to 
surface forces that cause the free surface to seek a minimum 
energy configuration. 

2. Liquid Reorientation 

Reorientation of liquids stored in partially-filled tanks 
might be necessary in a microgravity environment before 
pumping and transfer can occur if the bulk liquid internal to 
the tank is not located in the neighborhood of the outlet 
pipe. One scenario proposed to alleviate this problem is a 
temporary, impulsive acceleration of the tank (provided, 
for example, by thrusters) to reorient the fluid around the 
outlet. Key parameters in this process are the minimum 
magnitude and duration of the thrust necessary to efficiently 
reorient the fluid. 

Computed reorientation results are shown in Fig. 16, 
where ethanol tilling 33 % of a cylindrical tank (radius 2 cm, 
height 9 cm) with elliptical end caps is reoriented over a 
period of 5 s by an impulsive z acceleration of the tank equal 
to 29.4 cm/s’. The ethanol is initially in an inverted equi- 
librium meniscus position (e,, = 5”) at the top of the tank. 
Fluid flow is resolved on a 13 x 36 computational mesh, 
having tiner zones along the tank axis of symmetry and wall. 
The results are computed with the CSF model for surface 
tension in the VOF code of Ref. [27]. 

From Fig. 16, it is evident that the applied acceleration is 

E F G H 

FIG. 16. The results of a calculation using the VOF method to advect 
the fluid interfaces and the CSF model for surface tension of an ethanol 
reorientation in a cylindrical tank (2.0 cm radius, 9.0 cm height) are shown. 
The ethanol, initially inverted and filling 33 % of the tank, is subjected to 
a z-directed acceleration of -29.4 cm/s2. Fluid velocity vectors are shown 
at times of (A) 0.1, (B) 0.7, (C) 1.0, and (D) 1.4, (E) 1.9, (F) 2.5, (G) 4.0, 
and (H) 5.0 s. 

enough to reorient the ethanol at the tank bottom, where 
the pipe outlet is assumed to be located. This calculation is 
very difficult for other numerical treatments of surface ten- 
sion (i.e., Lagrangian, boundary integral, interface tracking, 
etc.) because of the complex interface topologies. The CSF 
model has no difficulty with this complexity, since interface 
geometries are estimated solely from the unit interface 
normal, which is computed easily from the gradient of VOF 
data. 

V. CONCLUSIONS 

The CSF model for surface tension has been described. In 
the CSF model, a surface force is formulated to model 
numerically surface tension effects at fluid interfaces having 
finite thickness. The method is ideally suited for Eulerian 
interfaces that are not in general aligned with the computa- 
tional grid. The CSF model has been validated on both 
static and dynamic interfaces having surface tension. It 
alleviates previous topology constraints on modeling inter- 
faces having surface tension without sacrificing accuracy 
and has been applied successfully to a number of fluid flows 
driven by surface tension. 
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Extensions of the CSF model to include, for example, 
spatially varying surface tension, dynamic contact angle 
treatment of wall adhesion, and the implementation of the 
model in three dimensions appear to be straightforward 
and would extend the method to many new and physically 
interesting problems. 

Clearly, there can be improvements in the numerical 
implementation of the method. The explicit time step 
constraint, (61), is often more restrictive that any other 
constraint. The continuum formulation does not increase 
the severity of this constraint, but may make it easier to 
formulate implicit equations. An implicit formulation that 
removes this constraint would decrease the cost of calcula- 
tions with surface tension by enormous factors. However, 
the complexity and nonlinearity of the surface tension equa- 
tions makes this a challenging problem. As we discovered in 
the drop and Rayleigh-Taylor calculations, both the VOF 
interface reconstruction and the high-order approximation 
of convection contribute to errors in numerical calculations 
with the CSF model. These errors might be eliminated using 
a particle-in-cell treatment, where the contact discontinuity 
at interfaces is preserved by the Lagrangian particles [34]. 
This possibility will be explored. 

Finally, the reformulation of a discontinuous, interface 
problem as a continuum problem, which has demonstrably 
aided in describing surface tension, probably has appli- 
cations to other problems with similar mathematical 
structure. We suggest that a fresh look at numerical com- 
putations on a grid from the point of view expressed here 
may yield new ways of modeling discontinuities. 

APPENDIX: CURVATURE AND 
SURFACE TENSION 

In this appendix we show that the effects of surface ten- 
sion are easily derived by summing the tensile forces acting 
on an interfacial fluid element. The net tensile force, or 
surface force, is then automatically given as a sum of forces 
normal and tangential to the interface, with the normal 
force containing an expression for the vector curvature 
needed for the CSF model. 

Consider the surface tension on an interface S in three 
dimensions. At each point x, on S, one can define a set of 
orthonormal basis vectors (i , , i,, ri), where i, and i, are in 
the tangent plane and i2 is the unit normal to S. Two curves 
on S, s, and s2, can be associated with this coordinate 
system, with s, along i, and s2 along i,. Since by definition 
the vector curvature is the change in the unit tangent vector 
to a curve with respect to arc length s along the curve, one 
can compute vector curvatures 

K,+(il.V)il 
1 (AlI 

for curve 1 and 

K,=~=(i,.v)i, 
2 

(AZ) 

for curve 2. The curvature, JC, is then defined as the 
geometric sum of the two curvatures K, = IK, 1 and 
K2 = IK2 1 [20]: 

0,) = PI + K2(%). b43) 

The sum ICY + K~ may be shown to equal the sum of the 
reciprocals of the principal radii of curvature, R, and R,. 
(Note that since K # Jm, the curvature vector K is not 
the vector sum of K~ and K~, i.e., K # K~ + ~2.) It is difficult 
to use the expression in (A3) for estimating the curvature of 
a 3D surface in a numerical model, since it requires an algo- 
rithm for finding and choosing intelligently the two most 
optimal (in the sense of computational ease and expense) 
curves, s, and s2. There are, however, some numerical 
models for surface tension that attempt to optimally choose 
curves s, and s2, thereby making use of (A3) for an estimate 
of 3D surface curvature [28]. 

Fortunately, there is an alternative and computationally 
much simpler expression for K [6], which one can also 
derive by considering the net surface force per unit area, F,, , 
on any given element of the surface S [9]. Consider, as in 
Fig. Al, an element of area 6A = riGA about the point x, on 
S which is enclosed by a curve C having elemental arc length 
ds. The surface force exerted on the material in 6A by the 
material outside of 6A across the elemental line element ds, 
from Fig. A 1, is equal to aZ ds, where t^ is the unit tangent to 
S that is perpendicular to arc length vector ds (i ds = ds x ri) 

FIG. Al. The surface S represents an interface separating two fluids in 
three dimensions. The tangential (FF’) and normal (FT’) components of 
the force on the surface element &A =fisA due to surface tension on 
its perimeter C are found by summing the tensile force elements 
oids=adsxrialongC. 
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at a point along C. The net surface force on element 6A, so that the vector curvature, K, is given by rirc. The use of the 
F,,6A, is found by summing all forces ai ds exerted on each gradient operator V, rather than V is appropriate when fi is 
element of arc length ds, defined only on a single surface. When, as in the text, we 

have a set of contours Z(x) = constant in a region of finite 

F,,6A=$~F\d~=$-$d~ 
thickness, and G(x) =Vc”(x)/lc”(x)l within the region, 
V. ri = (V, + V,) . ri also has meaning. However, 

= d.sxria= dA(rixV)xfio s s 
V,.ri=ri.(ui.V)ri=~(ri.V)(ri.~)=O, (A14) 

=&4[(rixV)xrio] for 6A + 0, (A4) so that V, .ii in (A13) can be replaced by V .ri. 
The simple yet general expression for the curvature in 

where we have used Stokes theorem. In the limit that (A13) has a number of computational advantages over the 
6A + 0, we can from (A4) identify F,,(x,) as expression in (A3). First, the curvature can be obtained 

solely from the one unique property of a surface, the unit 
F,,(x,) = (ri x V) x ria, (A51 normal ri, which is given in terms of the color function in 

(36). Second, the differential surface operator automatically 
which, upon letting the differential operator work on both incorporates the effects of arbitrary coordinate systems. For 
ri and 0, becomes example, cylindrically symmetric, 2D estimations of cur- 

vature using (A3) require two radii of curvature, R,, and 
F,,(x,) = a[(fi XV) x ri] + [ri x (Vo)] x vi. (A6) RCYl, whereas V, . fi properly accounts for the additional 

cylindrical force simply with the cylindrical form of V,. 

The differential operator can be written as the sum of 
Third, the extension to three dimensions is trivial, because 

surface and normal operators, V = Vs + V,, where V, 
the unit normal has the same definition in any dimension. 

and V, are defined in (2) and (3) respectively, so that 
Fourth, there is no need to find and determine two optimal 
curves s, and s2 from which to obtain a surface curvature, 

(A7) 
since the unit normal ri uniquely parameterizes any 3D 
surface. 

since li x V, = 0. Furthermore, by using the identities 
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(A6) can be rewritten as 

F,,(x,) = -rio(V, . fi) +V,CJ, (AlO) 
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F;:‘(x,) = -fio(V, . fi) (All) 

as the normal component of the surface force, and 

F”‘(x ) = V sa s so (A121 

as the tangential component of the surface force. The 
curvature can now be identified from (Al 1) as 
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